Factorisation of Greedoid Polynomials of Rooted Digraphs
نویسندگان
چکیده
Gordon and McMahon defined a two-variable greedoid polynomial f(G; t, z) for any G. They studied polynomials greedoids associated with rooted graphs digraphs. proved that of digraphs have the multiplicative direct sum property. In addition, these are divisible by $$1 + z$$ under certain conditions. We compute all up to order six. A is said factorise if it has non-constant factor lower degree. study factorability digraphs, particularly those not . give some examples an infinite family sums but their factorise.
منابع مشابه
On the greedoid polynomial for rooted graphs and rooted digraphs
We examine some properties of the 2-variable greedoid polynomial f(G;t, z) when G is the branching greedoid associated to a rooted graph or a rooted directed graph. For rooted digraphs, we show a factoring property of f (G;t ,z) determines whether or not the rooted digraph has a directed cycle.
متن کاملA Greedoid Polynomial Which Distinguishes Rooted Arborescences
We define a two-variable polynomial fa(t, z) for a greedoid G which generalizes the standard one-variable greedoid polynomial A<j(f). Several greedoid invariants (including the number of feasible sets, bases, and spanning sets) are easily shown to be evaluations of fG(t, z). We prove (Theorem 2.8) that when G is a rooted directed arborescence, fo(t, z) completely determines the arborescence. We...
متن کاملFactorisation of Macdonald polynomials
1. Macdonald polynomials Macdonald polynomials P λ (x; q, t) are orthogonal symmetric polynomials which are the natural multivariable generalisation of the continuous q-ultraspherical polyno-mials C n (x; β|q) [2] which, in their turn, constitute an important class of hyper-geometric orthogonal polynomials in one variable. Polynomials C n (x; β|q) can be obtained from the general Askey-Wilson p...
متن کاملRooted k-connections in digraphs
The problem of computing a minimum cost subgraph D′ = (V,A′) of a directed graph D = (V,A) so that D′ contains k edge-disjoint paths from a specified root r ∈ V to every other node in V is known to be nicely solvable since it can be formulated as a matroid intersection problem. A corresponding problem when openly disjoint paths are requested rather than edge-disjoint was solved in [12] with the...
متن کاملA characteristic polynomial for rooted graphs and rooted digraphs
We consider the one-variable characteristic polynomial p(G; ) in two settings. When G is a rooted digraph, we show that this polynomial essentially counts the number of sinks in G. When G is a rooted graph, we give combinatorial interpretations of several coe/cients and the degree of p(G; ). In particular, |p(G; 0)| is the number of acyclic orientations of G, while the degree of p(G; ) gives th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Graphs and Combinatorics
سال: 2021
ISSN: ['1435-5914', '0911-0119']
DOI: https://doi.org/10.1007/s00373-021-02347-0